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A simplified modal method to explain the resonance phenomenon in guided mode resonance (GMR) grat-
ings with asymmetric coatings is presented. The resonance observed is due to the interaction of two
propagation modes inside the grating. The reflectivity spectra and electric field distributions calculated
from the simplified modal method are compared using rigorous coupled-wave analysis (RCWA). The in-
fluences of high-order evanescent modes on the resonance peak are analyzed. A matrix Fabry-Perot (FP)
resonance condition is developed to evaluate the resonance wavelength. An explanation for the resonance
phenomenon observed based on the FP resonance phase condition is also proposed and demonstrated. The
simplified method provides clear physical insights into GMR gratings that are useful for the analysis of a
variety of other resonance gratings.
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The modal method, first proposed by Botten et al. of-
fers a simple and physical understanding of the diffrac-
tion process that takes place inside gratings[1]. However,
while this method has long been proposed, it is not widely
used. In 2005, Tishchenko restudied the modal method
in deep lamellar gratings and proposed interesting con-
cepts, such as impedance matching and a simplified
modal method[2]. Clausnitzer et al. formally proposed a
simplified modal method for a low-contrast transmission
grating and designed highly efficient polarizing beam
splitters[3,4]. Zheng et al. applied the modal method to
design rectangular transmission gratings under second
Bragg angle incidence and then designed a polarizing
beam splitter with triangular-groove gratings[5,6].

The simplified modal method has been successfully
applied in subwavelength low-contrast gratings. How-
ever, when the index contrast increases, such as when
the refractive index of the grating bars nr is around 2.0,
as in guided mode resonance (GMR) filters with asym-
metric coatings, obtaining diffraction efficiencies with
simple equations is difficult. The same is true when the
nr of the grating bar ranges from 2.8 to 3.5, as in high
broadband reflectors and high-quality factor resonators
where the GMR gratings are considered high-contrast
gratings (HCGs) but with symmetrical coatings. More-
over, consideration of the multiple reflections of grating
modes inside the gratings and the corresponding cou-
pling between modes for every reflection is necessary.
Lalanne et al. proposed a coupled-Bloch-mode model
to explain various optical properties of HCGs resulting
from vertical resonances of coupled-resonator modes[7].
Karagodsky et al. proposed a simple analytical method
to explain the ultra-high reflectivity feature of HCGs[8].
Based on the method proposed in Ref. [8], Karagodsky
et al. presented a simple explanation for the multimode
Fabry-Perot (FP) mechanism of resonant HCGs[9] and
completely explained the extraordinary features of HCGs

using a simple phase selection rule[10]. While the meth-
ods proposed in Refs. [7,8] mainly apply to HCGs with
symmetric coatings, they are essentially variations of the
simplified modal method.

The modal method proposed in Refs. [7–10] is applied
to HCGs with symmetric coatings (also known as free-
standing gratings) and has been successfully employed
in vertical-cavity surface-emitting lasers and hollow-core
low-loss waveguides[11−14]. However, for practical appli-
cation, the gratings often have a substrate, i.e., GMR
gratings with asymmetric coatings. Therefore, develop-
ment of a simplified modal analysis for gratings with
general structures, i.e., with asymmetric coatings, is nec-
essary.

Asymmetrically coated GMR gratings, which consist
of a diffraction grating and waveguide layers with a sharp
peak in their reflective spectrum, have been extensively
studied. They are used in laser cavity reflectors[15], light
modulators[16], optical switch devices[17], polarizers[18],
and narrowband filters[19]. The analytical method mainly
employed for GMR gratings with asymmetric coatings at
present is slab waveguide theory[20]. To date, no studies
have investigated the resonance phenomenon in GMR
gratings with asymmetric coatings using the simplified
modal method.

In this letter, we develop the modal method proposed
by Karagodsky[8−10] for HCGs with symmetric coatings.
The method is applied to explain the resonance phe-
nomenon in GMR gratings with asymmetrical coatings.
In traditional discussions, where GMR occurs when the
incident wave is coupled to a leaky lateral waveguide
mode by phase-matching, attention is directed toward
the lateral modes. By contrast, our discussion considers
the phenomenon from an entirely different perspective
and focuses on the interaction of longitudinal grating
eigen modes. The proposed modal method with differ-
ent numbers of modes is compared with the results of
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Fig. 1. Schematic of the guided mode resonance grating with
nomenclature.

rigorous coupled-wave analysis (RCWA) simulation[21,22].
The influences of high-order evanescent modes on the res-
onance peak are also analyzed. The results of the simpli-
fied modal method and RCWA simulation agree well and
validate the proposed method. Based on this method,
a matrix FP resonance condition is developed for the
GMR structure to evaluate the resonance wavelength.
Finally, FP resonance phase conditions are proposed and
demonstrated.

In this letter, we consider the case of normal incidence
and transverse electric (TE) polarization (the electric
field is in the y direction). Figure 1 shows the structure
of a GMR grating with asymmetric coatings. n1 and
ns are the refractive indices of the cover and substrate,
respectively, nr and ng are the refractive indices of the
grating bar and groove, respectively, d is the grating pe-
riod, and h is the grating depth. The grating layer acts
not only as a diffraction element but also as a waveguide
layer. For GMR gratings with complex structures, where
one or more waveguide layers are inserted between the
grating and the substrate, the diffraction element and
waveguide layers are separated.

The eigen equation for TE polarization is[2]
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2
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tive index of a mode, and β = k0neff is the propagation
constant of a mode.

Under normal incidence, the equation can be split into
two equations: one for even modes and the other for odd
modes, which are described as

For even modes:
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2
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For odd modes:
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2
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Under normal incidence, Eq. (2) for even modes is
identical to the dispersion relation of Ref. [8], which is
obtained from the theory of periodic slab waveguide ar-
rays. This relation illustrates that the analytical method
presented in Ref. [8] is essentially the simplified modal
method.

Under normal incidence, only the even modes can be
excited because of symmetry. Given that odd modes can-
not be excited, we only obtain even modes using Eq. (2).
For a subwavelength dielectric grating, only a few prop-
agating grating modes will dominate the diffraction pro-
cess. Evanescent modes have little impact on the diffrac-
tion process. For the GMR grating studied in this let-
ter, only two propagating modes occur in the wavelength
range.

In the following discussion, we develop the analysis
method proposed by Karagodsky et al.[8−10]. This modal
method is mainly applicable to subwavelength HCGs
with symmetric coatings, and the material of the grating
groove is air[8−10]. A general simplified modal method
for gratings with asymmetric coatings is presented. The
grating modes are obtained by solving Eq. (2), af-
ter which electromagnetic boundary conditions at the
grating-coating interfaces are matched to obtain the re-
flection and transmission efficiencies.

The basic formulas to be used are identical to those in
Ref. [8], except for four differences. The first difference
involves the lateral (x) wavenumbers (kg1 and kg2) inside
the grating grooves and bars, which have been previously
mentioned. The second difference involves the longitudi-
nal (z) wavenumbers in regions I and III. For a grating
with symmetric coatings, the longitudinal (z) wavenum-
bers in regions I and III are the same. However, for a
grating with asymmetric coatings, the longitudinal (z )
wavenumbers γn in regions I and III become

γI
n

=

√

k2
0n

2
1 − (2nπ/d)2 =

√

(2π/λ)2 n2
1 − (2nπ/d)2 ,

(4)

γIII
n

=

√

k2
0n

2
2 − (2nπ/d)

2
=

√

(2π/λ)
2
n2

2 − (2nπ/d)
2
.

(5)

The third difference refers to the lateral (x) field profiles
hout

x,n
and eout

y,n
in regions I and III. These profiles for sym-

metric coatings in Ref. [8] are identical. For asymmetric
ones, however, these profiles are different.

In region I, they become
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In region III, they become
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Finally, the reflection matrices ρ at the boundaries of
asymmetric coatings differ from those of symmetric ones.
The ρ values for the top (z = –h) and bottom surfaces
(z = 0) of a grating with symmetric coatings are identi-
cal in Ref. [8]. However, for a grating with asymmetric
coatings, the ρ at z = 0 becomes

ρ1 =
(

I +H−1
III EIII

)

−1 (

I −H−1
III EIII

)

. (8)
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The ρ at z = -h becomes

ρ2 =
(

I +H−1
I EI

)

−1 (

I −H−1
I EI

)

. (9)

Detailed derivations and definitions of η, ρ, HI, EI, HIII,
and EIII may be found in Ref. [8].

To demonstrate the validity of the simplified modal
method proposed above and determine how many modes
are required to obtain good agreement with the RCWA
simulation, we design a GMR grating and compare the
reflective spectra calculated using the modal method and
RCWA. The structural parameters of the designed grat-
ing are d = 363 nm, f = 0.5, h = 154.3 nm, n1 = 1,
ns = 1.46, nr = 2.1, and ng = 2.0. The substrate ma-
terial is quartz, i.e., SiO2. The materials of the grating
bar and groove may be zirconium dioxide and hafnium
dioxide, respectively.

Figure 2(a) shows the reflectivities calculated using
RCWA and the simplified modal method with the first
two modes. The results of the two methods agree very
well. Therefore, consideration of only the first two prop-
agation modes in the simplified modal method presents
sufficient precision to obtain the reflective spectrum.

To clearly present the difference between the two meth-
ods and analyze the influences of high-order evanescent
modes to the resonance peak, we show the reflective spec-
tra calculated using the two methods in Fig. 2(b) within
a very narrow band. The results show that the shapes
of the spectra are about the same but slightly shifted.
The resonance wavelengths calculated by RCWA and the
modal method with the first two, three, and four modes
are 632.81, 633.16, 633.16, and 632.74 nm, respectively.
The difference in wavelengths between RCWA and the
modal method with the first two and three modes is 0.35
nm, which is larger than the difference in wavelengths ob-
tained between RCWA and the modal method with four
modes (0.07 nm). As the number of modes increases, the
precision also increases. The first two modes are prop-
agation modes, and the modes with orders larger than
these are evanescent modes. For the resonance curve
with a sharp peak, evanescent modes have certain effects
on the position of the resonance peak, as shown in Fig.
2(b). The resonance wavelengths calculated using the
modal method with the first two and three modes are
about the same, so the third mode has little impact on
the resonance peak. However, when the fourth mode is
added to the calculations, the resonance peak shows a
significant shift in contrast to the third mode. Thus, the
fourth mode has more functions than the third one.

Fig. 2. (Color online) Reflective spectra calculated using
RCWA and the modal method with (a) two modes and (b)
different numbers of modes in a very narrow band.

Fig. 3. (Color online) Electric field distributions of four grat-

ing modes: (a) the first |E1/E0|
2, (b) the second |E2/E0|

2,

(c) the third |E3/E0|
2, and the (d) fourth |E4/E0|

2. Com-

parison of (e) the overall supermode |ES/E0|
2 and (f) RCWA

|ER/E0|
2. Note: for RCWA, the origin of the z-axis is at the

top surface of the grating.

Figures 3(a)–(d) show the electric field intensity distri-
butions of the first four modes at a resonance wavelength
of 632.74 nm. Figure 3(e) shows the overall electric field
intensity of all four modes, which is defined as a super-
mode in Ref. [9]. Figure 3(f) shows the field intensity dis-
tribution calculated using RCWA with a resonance wave-
length of 632.81 nm. All of these are normalized by the
electric field intensity of the incident plane wave. The re-
gions enclosed by the red boxes are grating bars. Figures
3(a)–(d) show that the first two grating modes are propa-
gation waves and have a standing wave profile in the z di-
rection. By contrast, the third and the fourth modes are
surface evanescent waves, so their energies are confined
close to the top and bottom of the grating. The inten-
sities of the first two modes are much larger than those
of the third and the fourth modes. This phenomenon
indicates that the first two modes have major functions,
especially the second mode, which has the largest elec-
tric field intensity. The intensities of the fourth mode are
larger than those of the third mode. Thus, the fourth
mode has a larger effect on the overall intensity than the
third one. This result confirms the previous observation
that the fourth mode has more effects on the resonance
peak than the third one.

Figures 3(e) and (f) show that the intensity calculated
using the modal method with the first four modes is iden-
tical to that obtained using the RCWA simulation with
more Fourier modes at the resonance wavelength. The
simplified modal method demonstrates favorable agree-
ment with the RCWA simulation. In fact, the modal
method with the first two modes yields intensities sim-
ilar to those obtained using RCWA. Thus, simulations
based on the modal method with only the first two modes
show sufficient precision to analyze the resonance phe-
nomenon. The resonance shown in Figs. 3(e) and (f) is
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of the first-order type because only one peak along the z
axis is observed for intensity.

For low-contrast transmission gratings, the grating
modes excited at the cover-grating interface propagate
forward and couple directly out to transmitted diffrac-
tion orders at the grating-substrate interface. The reflec-
tion and coupling between modes at the grating-substrate
interface are very small; therefore, consideration of mul-
tiple reflections inside the grating region is not necessary.
However, for HCGs, the reflection and coupling between
modes at the boundaries are large because of the large
index contrast, so the grating modes will be reflected
multiple times inside the grating, just as in the case of
FP effects.

Matrix FP resonance conditions can be developed from
HCGs with symmetric coatings in Ref. [9] to the GMR
gratings with asymmetric coatings discussed in this let-
ter. The resonance phenomenon can be analyzed as fol-
lows. When the grating is illuminated by a plane wave, it
can excite a collection of grating modes inside the grat-
ing with coefficients described by a vector M = (M1,
M2, . . . )T, where Mn is the coefficient of the nth mode
at the top surface of the grating (z = −h). Then, it
propagates downward to the bottom surface of the grat-
ing (z = 0), where the weight vector becomes ψM. The
modes are then reflected from the plane (z = 0) back up
into the –z direction with reflection matrix ρ1 because
of the large refractive index contrast between the grating
and substrate. The weight vector now becomes ρ1ψM.
The modes propagate upward to the top surface of the
grating and then are reflected from the plane (z = −h)
back up into the +z direction with reflection ρ2 because
of the large refractive index contrast between the grating
and the cover. After one full round trip, the weight vec-
tor eventually becomes ρ2ψρ1ψM.

As stated in Ref. [9], resonance occurs when a collec-
tion of modes, M, is self-sustainable. This condition can
be clearly described by the expression: M = ρ2ψρ1ψM.
This expression means that after one full round trip, the
supermode constructively interferes with itself, i.e., (I –
ρ2ψρ1ψ) M = 0, where I is a unit matrix. For a nonzero
solution to exist in such a matrix equation, the determi-
nant of the coefficient matrix should equal zero, i.e.,

det (I − ρ2φρ1φ) = 0. (10)

This is the resonance condition of GMR gratings with
asymmetric coatings. Figure 4 shows |det(I - ρ2ψρ1ψ)|
as a function of wavelength, which can be used for val-
idating the resonance condition of GMR grating. The
structural parameters of the grating are shown above,
and the simulation is based on the double-mode modal
method. As can be seen in Fig. 4, |det(I–ρ2ψρ1ψ)|
shows a minimum at the wavelength of 633.16 nm, which
is in accordance with the resonance wavelength obtained
above. Therefore, Eq. (10) can be used to evaluate the
resonance wavelength of GMR gratings with asymmetric
coatings.

The proposed matrix resonance condition of GMR
gratings considers the grating modes as a whole; the in-
dividual modes are not clear. Next, we discuss the phases
of each mode. To simplify our analysis, we only consider
the first two modes. After one full round trip, the weight
vector is ρ2ψρ1ψM and the accumulated phases are

Fig. 4. |det(I − ρ2φρ1φ)| as a function of wavelength.

Fig. 5. (Color online) Phases of the first two modes and dif-
ferences between them.

ψn = phase (eigenvalue# n of ρ2ψρ1ψ ). (11)

The FP phase resonance conditions for GMR gratings
are

{

ψn = 2mπ

|∆ψ|= |ψ2−ψ1|= 2lπ
m, l = 0, 1, 2 · · · , (12)

where n indicates the nth mode. Figure 5 shows the
phases of the two modes during one round trip through
the grating as well as their phase difference. The phase
curves of the first two modes cross at a wavelength of
about 633.16 nm. At this intersection, the phases of
both modes equal 2mπ (m = 0, 1, 2, · · ·). The phase
difference between the two modes is also 2lπ (l = 0, 1,
2, · · ·) at this point. At the resonance wavelength, the
FP phase resonance conditions of Eq. (12) are fulfilled.
When the phases of the two longitudinal propagation
grating modes inside the grating simultaneously satisfy
FP conditions, they interfere constructively. This phe-
nomenon results in resonance inside the GMR grating,
which clearly produces a physical picture of two-mode
interference inside the grating.

In conclusion, we present a simplified modal method
to explain the resonance phenomenon of GMR grat-
ings with asymmetric coatings. The method focuses on
the interaction of longitudinal grating modes inside the
grating. The results of the simplified modal method and
RCWA simulation agree very well with each other, which
confirms the validity of the proposed method. Based on
the double-mode modal method, a matrix FP resonance
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condition is developed to evaluate the resonance wave-
length. A FP resonance phase condition is proposed and
demonstrated. This theoretical study provides a simple
physical picture of resonance in GMR gratings that will
be helpful for explaining resonance phenomena in other
gratings with more complex structures.
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